A Note on Sturm-Liouville Problem for Difference Equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reflectionless Sturm-Liouville Equations

We consider compactly supported perturbations of periodic Sturm-Liouville equations. In this context, one can use the Floquet solutions of the periodic background to define scattering coefficients. We prove that if the reflection coefficient is identically zero, then the operators corresponding to the periodic and perturbed equations, respectively, are unitarily equivalent. In some appendices, ...

متن کامل

Extremal Eigenvalues for a Sturm-Liouville Problem

We consider the fourth order boundary value problem (ry′′)′′+(py′)′+ qy = λwy, y(a) = y′(a) = y(b) = y′(b) = 0, which is used in a variety of physical models. For such models, the extremal values of the smallest eigenvalue help answer certain optimization problems, such as maximizing the fundamental frequency of a vibrating elastic system or finding the tallest column that will not buckle under...

متن کامل

Eigenfunction Expansions for a Sturm–Liouville Problem on Time Scales

In this paper we investigate a Sturm–Liouville eigenvalue problem on time scales. Existence of the eigenvalues and eigenfunctions is proved. Mean square convergent and uniformly convergent expansions in the eigenfunctions are established. AMS subject classification: 34L10.

متن کامل

Asymptotic distributions of Neumann problem for Sturm-Liouville equation

In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.

متن کامل

On the Eigenvectors of a Finite-Difference Approximation to the Sturm-Liouville Eigenvalue Problem

This paper is concerned with a centered finite-difference approximation to to the nonselfadjoint Sturm-Liouville eigenvalue problem L[u] = [a(x)ux]x b(x)ux + c(x)u = Kit, 0 < x < 1, u(0) = u(l) = 0. It is shown that the eigenvectors W of the M X Af-matrix (Ax = l/(M +1) mesh size), which approximates L, are bounded in the maximum norm independent of M if they are normalized so that \W l2 = 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ITM Web of Conferences

سال: 2017

ISSN: 2271-2097

DOI: 10.1051/itmconf/20171301005